
(define (function dom rng)

(lambda (pos neg)

(let ([dom-c (dom neg pos)]

[rng-c (rng pos neg)])

(lambda (val)

(if (procedure? val)

(lambda (x) (rng-c (val (dom-c x))))

(blame pos))))))

Exercise

Apply this to our earlier example and confirm that we get the expected
blame. Also expand the code manually to see why this happens.

Suppose, further, we define d/dx with the labels "d/dx body" for its positive
position and "d/dx input" for its negative. Say we supply the function number-

>string, which patently does not compute derivatives, and apply the result to 10:

((d/dx (guard (function (immediate number?)

(immediate string?))

number->string

"n->s body"

"n->s input"))

10)

This correctly indicates that the blame should be ascribed to the expression that fed
number->string as a supposed numeric function to d/dx—not to d/dx itself.

Exercise

Hand-evaluate d/dx, apply it to all the relevant violation examples, and
confirm that the resulting blame is accurate. What happens if you supply
d/dx with string->number with a function contract indicating it maps
strings to numbers? What if you supply the same function with no contract
at all?

17 Alternate Application Semantics
Long ago [REF], we considered the question of what to substitute when performing
application. Now we are ready to consider some alternatives. At the time, we suggested
just one alternative; in fact there are many more. To understand this, see whether you
can answer this question:

Which of these is the same?

• (f x (current-seconds))

• (f x (current-seconds))

• (f x (current-seconds))

195

• (f x (current-seconds))

What we’re about to find is that this fragment of syntax can have wildly different
run-time behaviors. For instance, there is the distinction we have already mentioned:
variation in when (current-seconds) is evaluated. There is variation in how many
times it is evaluated (and hence f is run). There is even variation even in whether
values for x flow strictly from the caller to the callee, or can even flow in the opposite
direction!

17.1 Lazy Application
Let’s start by considering when parameters are reduced to values. That is, do we sub-
stitute formal parameters with the value of the actual parameter, or with the actual
parameter expression itself? If we define

(define (sq x) (* x x))

and invoke it as

(sq (+ 2 3))

does that reduce to

(* 5 5)

or to

(* (+ 2 3) (+ 2 3))

? The former is called eager application, while the latter is lazy. Of course we don’t Some people also
use the term strict
for the former. A
more arcane
terminology is
applicative-order
evaluation for the
former and
normal-order
evaluation for the
latter. Or,
call-by-value for
the former and
call-by-name or
call-by-need for the
latter. The last two
terms—by-name
versus
by-need—actually
represent a
technical distinction
we will see below.
This concludes our
name-dump.

want to return to defining interpreters by substitution, but it is always useful to think of
substitution as a design principle.

17.1.1 A Lazy Application Example

The lazy alternative has a distinguished history (for instance, this is what the true ∼-
calculus uses), but returned to the fore from programming experiments considering
what might happen if certain operators did not evaluate the arguments at application
but only when the value was needed. For instance, consider the definition

(define ones (cons 1 ones))

In ordinary Racket, this is clearly ill-defined: ones has not yet been defined (on the
left) when we try to evaluate it (on the right), so this results in an error. If, however,
we do not try to evaluate it until we actually need it, by that time the definition is
well-formed. Because each rest obtains another ones, this produces an infinite list.

We’ve glossed over a lot that needs explaining. Does the ones in the rest position
of the cons evaluate to a copy of that expression, or to the result of the very same

196

expression itself? In other words, have we simply created an infinitely unfolding list,
or have we created an actually cyclic one?

This depends in good part on whether or not our language has mutation. If it does,
then perhaps we can modify each of the cells of the resulting list, which means we
can observe the difference between the two implementations above: in the unfolded
version mutating one first will not affect another, but in the cyclic one, changing one
will affect them all. Therefore, in a language with mutation, we might argue that this
should represent a lazy unfolding, but not an actual cyclic datum.

Keep this discussion in mind. We cannot resolve it right now; rather, let us examine
lazy evaluation a little more, then return to this question [REF].

17.1.2 What Are Values?

If we return to our core higher-order function interpreter [REF], we recall that we have
two kinds of values: numbers and closures. If we want to support lazy evaluation
instead, we need to ask what happens at function application. What exactly are we
passing?

This seems obvious enough: in a lazy application semantics, we need to pass ex-
pressions. But a moment’s thought shows that this can be problematic. Expressions
contain identifier names, and we don’t want them to be accidentally bound. And now these truly

will be identifiers,
not variables, as we
will see [REF].

For instance, suppose we have

(define (f x)

(lambda (y)

(+ x y)))

and apply it as follows:

((f 3) (+ x 4))

Do Now!

What should this produce?

Clearly, we should get an error reporting x as not being bound.
Now let’s trace it. The first application creates a closure where x is bound to 3.

If we now bind y to (+ x 4), this results in the expression (+ x (+ x 4)) in an
environment where x is bound. As a result we get the answer 10, not an error.

Do Now!

Have we made a subtle assumption above?

Yes we have: we’ve assumed that + evaluates arguments and returns numeric an-
swers. Perhaps + also behaves lazily; we will study this issue in a moment. Never-
theless, the central point remains: if we are not careful, this erroneous expression will
produce some kind of valid answer, not an error.

In case you think this is entirely a problem with erroneous programs, and can hence
be treated specially (e.g., first scan the program source for free identifiers), here is
another use of the same f:

197

(let ([x 5])

((f 3) x))

Do Now!

What should this produce?

We would expect this to produce the result of (+ 3 5) (probably 8). However, if we
substitute x inside the arithmetic expression, we would get (+ 3 3) instead.

This latter example holds the key to our solution. In the latter example, the problem
ostensibly arises only when we use environments; if instead we use substitution, x in
the application is substituted as soon as we encounter the let, and the result is what we
expect. In fact, note that the same argument holds earlier: if we had used substitution,
the very occurrence of x would have signaled an error. In short, we have to make sure
our environment-based implementation matches what substitution would have done.
Doesn’t that sound familiar!

In other words, the solution is to bundle the argument expression with its environ-
ment: i.e., create a closure. This closure has no parameters, so it is effectively a thunk. Indeed, this

demonstrates that
functions have two
uses: to substitute
names with values,
and also to defer
substitution. let is
the former without
the latter; thunks
are the latter
without the former.
We have already
established that the
former is valuable
in its own right; this
section shows that
the same is true of
the latter.

We could use existing functions to represent these thunks, but our instinct should tell
us that it is better to use different data representations for logically different purposes:
closV for user-created closures, and something else for internally-created ones. In-
deed, as we will see, it will have been wise to keep them separate because there is one
place where it is critical we can tell them apart.

To conclude this discussion, here is our new set of values:

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)]

[suspendV (body : ExprC) (env : Env)])

The first two variants are exactly the same; the third is new, and as we discussed, is
effectively a parameter-less procedure, as its type suggests.

17.1.3 What Causes Evaluation?

Let us now return to discussing arithmetic expressions. On evaluating (+ 1 2), a
lazy application interpreter could return any number of things, including (suspendV

(+ 1 2) mt-env). In this way suspended computation could cascade on suspended It is legitimate to
write mt-env here
because even if the
(+ 1 2)

expression was
written in a
non-empty
environment, it has
no free identifiers,
so it doesn’t need
any of the
environment’s
bindings.

computation, and in the limiting case every program would return immediately with an
“answer”: the thunk representing the suspension of its computation.

Clearly, something must force a suspension to be lifted. (Lifting a suspension
means, of course, evaluating its body in the stored environment.) Those expression
positions that undo suspensions are called strictness points. The most obvious strict-
ness point is the interactive environment’s printer, because a user clearly would not use
such an environment if they did not wish to see answers. We will embody the act of
lifting suspension in the procedure strict:

198

(define (strict [v : Value]) : Value

(type-case Value v

[numV (n) v]

[closV (a b e) v]

[suspendV (b e) (strict (interp b e))]))

where the returned Value is guaranteed to not be a suspendV. We can imagine the
printer as wrapping strict around the result of evaluating the program, to obtain a
value to print.

Do Now!

What impact would using closures to represent suspended computation
have had?

The definition of strict above depends crucially on being able to distinguish
deferred computations—which are internally-constructed closures—from user-defined
closures. Had we conflated the two, then we would have to guess what to do with
zero-argument closures. If we fail to further process them, we might incorrectly get an
error (e.g., + might get a thunk rather than the numeric value residing inside it). If we
do process it further, we might accidentally force a user-defined thunk prematurely. In
short, we need a flag on thunks telling us whether they are internal or user-defined. For
clarity, our interpreter uses a separate variant.

Let us now return to the interaction between strict and the interpreter. Unfor-
tunately, as we have defined things, this will cause an infinite loop. The act of trying
to interpret an addition creates a suspension, which strict tries to undo by forcing
the interpreter to interpret an addition, which.... Clearly, therefore, we cannot have
every expression simply suspend its computation; instead, we will limit suspension to
applications. This suffices to give us the rich power of laziness, without making the
language absurd.

17.1.4 An Interpreter

As usual, we will define the interpreter in cases.
<lazy-interp> ::=

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

<lazy-numC-case>
<lazy-idC-case>
<lazy-plusC/multC-case>
<lazy-appC-case>
<lazy-lamC-case>))

Numbers are easy: they are already values, so there is no point needlessly suspend-
ing them:

<lazy-numC-case> ::=

[numC (n) (numV n)]

199

Closures, similarly, remain the same:
<lazy-lamC-case> ::=

[lamC (a b) (closV a b env)]

Identifiers should just return whatever they are bound to:
<lazy-idC-case> ::=

[idC (n) (lookup n env)]

The arguments of arithmetic expressions are usually defined as strictness points,
because otherwise we would simply have to implement the actual arithmetic elsewhere:

<lazy-plusC/multC-case> ::=

[plusC (l r) (num+ (strict (interp l env))

(strict (interp r env)))]

[multC (l r) (num* (strict (interp l env))

(strict (interp r env)))]

Finally, we have application. Here, instead of evaluating the argument position, we
suspend it. The function position has to be a strictness point, however, otherwise we
wouldn’t know what function to apply and hence how to continue the computation:

<lazy-appC-case> ::=

[appC (f a) (local ([define f-value (strict (interp f env))])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(suspendV a env))

(closV-env f-value))))]

And that’s it! By adding a new kind of answer, inserting a few calls to strict,
and replacing interp with suspendV in the argument position of application, we have
turned our eager application interpreter into one with lazy application. Yet this small
change has such enormous impact on the programs we write! For a more thorough
examination of this impact, study Haskell or the #lang lazy language in Racket.

Exercise

If we instead replace the identifier case with (strict (lookup n env))

(i.e., wrapped strict around the result of looking up an identifier), what
impact would it have on the language? Consider richer languages with
data structures, etc.

Exercise

Construct programs that produce different results in a lazy evaluation than
an eager evaluation (i.e., the same program text with different answers
in the two cases). Try to make the differences interesting, i.e., beyond
whether one returns a suspendV while the other doesn’t. For instance,
does one terminate or produce an error while the other one doesn’t?

200

Exercise

Instrument both interpreters to count the number of steps they take to re-
turn answers. For programs that produce the same answer under both eval-
uation strategies, does one strategy always take more steps than the other?

17.1.5 Laziness and Mutation

One of the virtues of lazy evaluation is that it defers execution. Usually this is a good
thing: it enables us to build infinite data structures and avoids computation until nec-
essary. Unfortunately, it also changes when computations occur, and in particular,
changes the order of when computations evaluate relative to each other, depending on
what strictness points are encountered when. As a result, programmers greatly lose
predictability of ordering. This is of course a problem when expressions perform mu-
tation operations, because now it becomes extremely difficult to predict what value a
program will compute (relative to the eager version).

As a result, the core of every lazy language is free of mutation. In Haskell, muta-
tion and other state operations are introduced through a variety of mechanisms such as
monads and arrows that ultimately introduce the ability to (strictly) sequentialize code;
this sequentiality is essential to being able to predict the order of execution and thus
the result of operations. If programs are structured well the number of these depen-
dencies should be small; furthermore, the Haskell type system attempts to reflect these
operations in the types themselves, so programmers can more easily about their effects.

17.1.6 Caching Computation

Now that we’ve concluded that lazy computation has to have no mutations, we observe
a pleasant consequence (dare we say, side-effect?): given a fixed an environment, an
expression always produces the same answer. As a result, the run-time system can
cache the value of an expression when it is first forced to an answer by strictness,
and return this cached value on subsequent attempts to compute it. Of course, this
caching—which is a form of memoization—is only sound when the expression returns
the same value every time, which we have assumed. In fact, the compiler and run-
time system can aggressively hunt for uses of the same expression in different parts
of the program and, if the relevant parts of their environment are the same, conflate
their evaluation. The strategy of evaluating the suspended computation every time it is
needed is called call-by-name; that of caching its result, call-by-need.

17.2 Reactive Application
Now consider an expression like (current-seconds). When we evaluate it, it returns
a single number representing the current time. For instance,
> (current-seconds)

1353030630

However, even as we stare at this value, it is already out-of-date! It represents the time
when the function application occurred, but does not stay current.

201

17.2.1 Motivating Example: A Timer

Suppose we were trying to implement a timer that measures elapsed time. Ideally, we
would like to write a program such as this:

(let ([start (current-seconds)])

(- (current-seconds)

start))

In JavaScript, we might write:
d = new Date();

start = d.getTime();

current = d.getTime();

elapsed = current - start;

On most machines this Racket expression, or the value of elapsed in JavaScript, will
evaluate to 0 or some other very small number. This is because these programs repre-
sent one measure of the elapsed time: that at the second invocation of the procedure
that gets the current time. This gives us an instanteous time split, but not an actual
timer.

In most languages, to build an actual timer, we would have to create an instance
of some sort of timer object, and install a callback. Every time the clock ticks, the
timer object—representing the operating system—invokes the callback. The callback
is then responsible for updating values in the rest of the system, and hopefully doing
so globally and consistently. However, it cannot do so by returning values, because it
would return to the operating system, which is agnostic to and does not care about our
application; therefore, the callback is forced to perform its action through mutation. In
JavaScript, for instance:
var timerID = null;

var elapsedTime = 0;

function doEverySecond() {

elapsedTime += 1;

document.getElementById('curTime').innerHTML = elapsedTime; }

function startTimer() {

timerId = setInterval(doEverySecond, 1000); }

assuming we have an HTML page with an id named curTime, and that the onload or
other callback invokes startTimer.

One alternative to this spaghetti code is for the application program to repeatedly
poll the operating system for the current time. However:

• Calling too frequently wastes resources, while calling too infrequently results in
incorrect answers. However, to call at just the right resolution, we would need a
timer signal in the first place!

• While it may be possible to create such a polling loop for regular events such as
timers, it is impossible to do so accurately for unpredictable behaviors such as
user input (whose frequency cannot, in general, be predicted).

202

• On top of all this, writing this loop pollutes the program’s structure and forces
the developer to sustain this extra burden.

The callback-based solution, however, demonstrates an inversion of control. In-
stead of the application program calling the operating system, the operating system has
now been charged with calling (into) the application program. The reactive behavior
that should have been deeply nested, inside the display expression, has instead been
brought to the top-level, and its value drives the other computations. The fundamental
cause for this is that the world is in control, not the program, so external stimuli deter-
mine when and how the program should next run, not intrinsic program expressions.

17.2.2 Callback Types are Four-Letter Words

The characteristic signature (so to speak) of this pattern is manifest in the types. Be-
cause the operating system is agnostic to the program’s values, the callback usually has
no return type at all, or it is a generic status indicator, not an application-specific value.
Therefore, in typed languages, the type is usually some four-letter word. For instance,
here is a fragment of a GUI library in Java:
interface ChangeListener extends EventListener {

void stateChanged(ChangeEvent e) { ... } }

interface ActionListener extends EventListener {

void actionPerformed(ActionEvent e) { ... } }

interface MouseListener extends EventListener {

void mouseClicked(MouseEvent e) { ... }

void mouseEntered(MouseEvent e) { ... } }

And here’s one in OCaml:
mainLoop : unit -> unit

closeTk : unit -> unit

destroy : 'a Widget.widget -> unit

update : unit -> unit

pack : ... -> 'd Widget.widget list -> unit

grid : ... -> 'b Widget.widget list -> unit

In Haskell, the four letters have an extra space in them:
select :: Selecting w => Event w (IO ())

mouse :: Reactive w => Event w (EventMouse -> IO ())

keyboard :: Reactive w => Event w (EventKey -> IO ())

resize :: Reactive w => Event w (IO ())

focus :: Reactive w => Event w (Bool -> IO ())

activate :: Reactive w => Event w (Bool -> IO ())

and so on. In all these cases, the presence of a “void”-like type clearly indicates that
the functions do not return any interesting value, so their only purpose must be to
mutate the store or have some other side-effect. This also means that no rich means of

203

composition—such as the nesting of expressions—is possible: the only composition
operator for void-typed statements is sequencing. Thus the types reveal that we will be
forced away from being able to write nested expressions.

Readers will, of course, be familiar with this problem from our earlier discussion of
Web programming. This problem occurs on the server due to statelessness [REF], and
also on the client due to single-threading [REF]. On the server, at least, we were able
to use continuations to address this problem. However, continuations are not available
in all languages, and implementing them can be onerous. Furthermore, it can be tricky
to set up just the right continuation to pass as a callback. Instead, we will explore an
alternate solution.

17.2.3 The Alternative: Reactive Languages

Consider the FrTime (pronounced “Father Time”) language in DrRacket. If we run In DrRacket v5.3,
you must select the
language from the
Language menu;
writing #lang

frtime will not
provide the
interesting
interactions window
behavior.

this expression at the interactions window, we still get 0 or some other very small
non-negative number:

(let ([start (current-seconds)])

(- (current-seconds)

start))

In fact, we can try several other expressions and see that FrTime seems to have exactly
like traditional Racket.

However, it also binds a few additional identifiers. For instance, it provides a value
bound to seconds. If we type this into the interaction prompt, we get something
very interesting! First we see 1353030630, then a second later 1353030631, another
second later 1353030632, and so on. This kind of value is called a behavior: a value
that changes over time. Except we haven’t written any callbacks or other code to keep
it current.

A behavior can be used in computations. For instance, we can write (- seconds

seconds), and this always evaluates to 0. Here are some more expressions to try at
the interaction prompt:

(add1 seconds)

(modulo seconds 10)

(build-list (modulo seconds 10) identity)

(build-list (add1 (modulo seconds 10)) identity)

As you can see, being a behavior is “sticky”: if any sub-expression is a behavior, so is
its enclosing expression.

Thanks to this evaluation model, every time seconds updates the entire application
happens afresh: as a result, even though we have written seemingly simple expressions
without any explicit loop-like control, the program still “loops”. In other words, having
explored an application semantics where arguments are evaluated once, then another
where they may be evaluated zero times, now we have one where they are evaluated as
many times as necessary, and the entire corresponding function with them. As a con-
sequence, reactive values that are “inside” an expression no longer brought “outisde”;

204

rather, they can reside nested inside expressions, giving programmers a more natural
means of expression. This style of evaluation is called dataflow or functional reactive
programming. Historically,

dataflow has tended
to refer to
languages with
first-order
functions, whereas
functional reactive
languages support
higher-order
functions too.

FrTime implements what we call transparent reactivity, whereby the programmer
can inject a reactive behavior anywhere in a program’s evaluation without needing to
make any syntactic changes to its context. This has the virtue of making it easy to
inject reactivity into existing programs, but it can make the evaluation and cost model
more complex for programmers. In other languages, programmers can instead explic-
itly introduce behavior through appropriate primitives, trading convenience for greater
predictability. FrTime’s sister language, Flapjax, an extension of JavaScript, provides
both modes. See the Flapjax

Web site.

17.2.4 Implementing Transparent Reactivity

To make an existing language implement transparent reactivity, we have to (naturally)
alter the semantics of function application. We will do this in two steps. First we will
rewrite reactive function applications into a more complex form, then we will show
how this more complex form enables reactive updates.

Dataflow Graph Construction

The essence of making an application reactive is simple to explain through desguaring.
Assume we have defined a new constructor behavior. The constructor takes a thunk
that represents what computation to perform every time an argument updates, and all
the values that the expression depends on. The value it produces stores the current
value of the behavior. Then an expression like (f x y) turns into

(if (or (behavior? x) (behavior? y))

(behavior (λ () (f (current-value x) (current-value y))) x y)

(f x y))

where we assume, given a non-behavior constant, current-value behaves as the
identity function.

Let us look at two examples of using the above definition. Consider the trivial case
where neither parameter is a behavior, e.g., (+ 3 4). This desugars to

(if (or (behavior? 3) (behavior? 4))

(behavior (λ () (+ (current-value 3) (current-value 4))) 3 4)

(+ 3 4))

Since both 3 and 4 are numbers, not behaviors, this reduces to (+ 3 4), which is
precisely what we would like. This reflects an important principle: when no behaviors
are present, programs behave exactly as they did in the non-reactive version of the
language.

If we compute (+ 1 seconds), this expands to

205

http://www.flapjax-lang.org/
http://www.flapjax-lang.org/

(if (or (behavior? 1) (behavior? seconds))

(behavior (λ () (+ (current-value 1) (current-value seconds))) 1 seconds)

(+ 1 seconds))

Because seconds is a behavior, this reduces to

(behavior (λ () (+ (current-value 1) (current-value seconds))) 1 seconds)

Any expression that depends on this now sees its argument also become a behavior,
making the property “sticky” as we argued before.

Exercise

In what way, if any, did the above desugaring depend on eager evaluation?

Dataflow Graph Update

Of course, simply constructing behavior values is not enough. The key additional
information is in the extra arguments to behavior. The language filters out those
arguments that are themselves behaviors (e.g., seconds, above) and registers this new
behavior as one of that depends on those existing ones. This registration process creates
a graph of behavior expression dependencies, known as a dataflow graph (since it
reflects the paths along which data need to flow).

If the program did not evaluate to any behaviors, then evaluation simply produces
an answer, and there are no graphs created. If, however, there are behavior depen-
dencies, then evaluation produces not a traditional answer but a behavior value, with
dependencies already recorded. (In practice, it is useful to also track which primi-
tive behaviors are actually necessary, to avoid unnecessarily evaluating primitives that
no other behavior in the program refers to.) In short, program execution generates a
dataflow graph. Thus, we do not need a special, new evaluator for the language; we
instead embed the graph-construction semantics in traditional evaluation.

Now a dataflow propagation algorithm begins to execute. Every time a primitive
behavior changes, the algorithm applies its stored thunk, obtains its new value, stores it,
and then signals each behavior dependent on it. For instance, if seconds updates, it no-
tifies the (+ 1 seconds) expression’s behavior. The latter behavior now evaluates its
thunk, (λ () (+ (current-value 1) (current-value seconds))). This adds
1 to the newest value of seconds, making that the new value of this behavior—just as
we would expect.

Evaluation Order

The discussion above presents too simple a view of graph update. Consider the follow-
ing program:

(> (add1 seconds)

seconds)

This program has one primitive behavior, seconds, and constructs two more: one for
(add1 seconds) and one more for the entire expression.

206

We would expect this expression to always be true. However, when seconds up-
dates, depending on the order in which it handles updates, it might update the whole
expression before it does (add1 seconds). Suppose the old value of seconds was
100, so the new one is 101. However, the node for (add1 seconds) is still storing
its old value (because it has not yet been updated), so it holds (add1 100) or 101.
That means the > compares 101 with 1, which is false, making this expression return
a value that should simply never have ensued from its static description. This situation
is called a glitch.

There is an easy solution to avoiding glitches, which the above example illustrates
(and that a theorem can show is sufficient). This is to topologically sort the nodes.
Then, every node is only processed after it depends on have been, so there is no danger
of seeing outdated or inconsistent values.

The problem becomes more difficult in the presence of cycles in the graph. In those
cases, we need special recursion operators that can take an initial value for the cyclic
behavior. This makes it possible to break the cyclic dependency, reducing evaluation
to the process that has already been defined.

There is much more to say about the evaluation of dataflow languages, such as the
treatment of conditionals and a dual notion to behaviors that is discrete and stream-
like. I hope you will read the literature on reactive languages to learn more about these
topics.

Exercise

Earlier we picked on a Haskell library. To be fair, however, the reactive
solution we have shown was enunciated in Haskell, whose lazy evaluation
makes this form of evaluation relatively easy to support.

Implement reactive evaluation using laziness.

207

